Contract:

ENEA – Banco Interamericano de Desarrollo (BID) or InterAmerican Development Bank (IDB)

Manejo de Riesgos en Valparaiso, Servicios Técnicos

Acronym: "MAR VASTO"

ATN/II-9816-CH

Contract n.

PRM.7.035.00-C

DGPS SURVEY IN THE CITY OF VALPARAISO

3			Name					
			Signature					
2			Name					
			Signature					
1			Name					
			Signature					
0	Date	15.06.2008	Name	A. SCREPANTI	M. INDIRLI			
			Signature	Augulofulouh	Maurizo Gud'el			
				AUTHORS				

INDEX

Preface	Pag.	3
1. Introduction	Pag.	3
2. Identification of the DGPS survey pattern of points	Pag.	3
3. In field DGPS survey	Pag.	6
4. Conclusions	Pag.	8

PREFACE

The work has been carried out during the *in situ* investigation of the Italian team of experts, done in the framework of two missions in Valparaíso (May and October-December 2007), with the help of many local Organizations **[01-03]**. In particular, we appreciated the cooperation of the personnel of the "Oficina de Gestion Patrimonial - OGP" of the Valparaiso Municipality (the director Paulina Kaplan Depolo, the architect Sotero Apablaza Minchel, the geographer Mauricio Gonzalez Loyola and the architect Cristian Palma). Moreover, a fundamental support came from the Firemen of Valparaiso (Cuerpo Voluntario de Bomberos, Sexta Compañia Bomba Italia "Cristoforo Colombo"). Furthermore, SHOA (Servicio Hidrografico y Oceanografico de la Armada de Chile) provided an indispensable help (trigonometric coordinates and monographs of vertices, software for the conversion from geographic coordinates to UTM, etc.) to our work for the MAR VASTO project.

1. INTRODUCTION

GPS (Global Positioning System) is a fully functional Global Navigation Satellite System (GNSS). Utilizing a constellation of about 32 satellites that transmitting precise microwave signals, the system enables a GPS receiver to determine its location, speed, direction, and time (Fig. 1).

Figure 1: a visual example of the GPS satellite constellation in motion with the Earth rotating; the number of satellites in view from a given point on the Earth surface changes with time.

An in field survey using DGPS (Differential Global Positioning System) has been considered necessary, in order to check aerial photos and cartography provided by Chilean partners and verify the GIS database **[04]**, developed in the framework of the MAR VASTO project, from the topographic point of view. In fact, an aerial photo of the Valparaiso region **[05]** has been used as basis at the beginning, even if not well geo-referenced; moreover, the digital cartography provided by OGP (streets, buildings, quoted points, and other information) was not very accurate and didn't match the above said aerial photo. Thus, DGPS survey provided a pattern of points enabling to remove uncertainties, clarifying univocally the real geographic position of the GIS final database.

2. IDENTIFICATION OF THE DGPS SURVEY PATTERN OF POINTS

The choice of the DGPS pattern of points, planned in Italy before the mission (but later implemented during the in situ campaign), foresaw the following steps:

- homogeneous distribution of the points in the Valparaiso area;
- capability to recognize the points, previously identified on the aerial photo, during the in field campaign;
- easy accessibility of the sites;

- identification of a reserve stock of extra points, if some sites could be inaccessible or unnoticeable during the survey.

Furthermore, the identification of existing geodimetry landmarks was indispensable, in order to link the DGPS survey to the official Chilean cartography. In this case, SHOA was the fundamental provider of vertex trigonometric coordinates (Fig. 2), trigonometric monographs (Fig. 3), and software tools for the conversion from Geographic Coordinates (obtained by DGPS) to the UTM system (referred to the mean sea level), necessary for the final GIS database.

Figure 2: SHOA trigonometric vertex with Geographic and UTM coordinates.

CERTIFICADO Y MONOGRAFÍA DE VÉRTICE

VÉRTICE: PALM	LUGAR: SHOA				
FOTOS O	SENERAL				
FOTO PARTICULAR	COORDENADAS SIRGAS (WGS-84)				
	NORTE : 6.342.493,702				
	ESTE : 253.871,355				
	M. CENTRAL : 69°				
	ZONA : 19				
	LATITUD : 33° 01' 41.73745" S				
	LONGITUD : 71° 38' 06.80713"W				
and the second second	ALT. N.M.M. :				
	ALT. ELIPSOIDAL : 116,534 m.				
	TIPO ESTACIÓN : Primario				
DESCRIPCIÓN: El vértice "PALM" se encuentra ubicado en el sector de las Palmeras en el patio interior del SHOA. Está monumentado por una cota de bronce empotrada en cemento en una base triangular de cemento.					

3. IN FIELD DGPS SURVEY

The in field DGPS survey has been carried out using two Trimble receivers (double frequency, model 5700), with the "Fast Static" procedure (acquisition frequency at 15 seconds, time duration of 8 minutes for each selected site), when at least six transmitting satellites were available along the entire measurement; on the contrary, in case of less signals, the measure time has been prolonged. Satellites under 13° horizon elevation have been excluded because useless (Fig. 4).

Figure 4: the in field DGPS survey.

In order to cover all the geo-referencing area, it has been necessary to put the Master of the DGPS equipment in three different bases (Fig. 5); this procedure permitted to keep the length of the Master-Rover vectors under 4 km. Therefore, the survey measure precision has been very satisfactory, with a maximum error in planimetry of 2.8 cm and in altimetry of 5.5 cm. The final planimetry of the DGPS survey is shown by Fig. 6.

The rough DGPS data processing, to obtain Geographic Coordinates, has been done by software "Trimble Geomatic Office version 1.7", while the conversion of those coordinates into the UTM system for the GIS database (UTM reference Time Zone 19 South with Datum WGS-84) by the software "The Geographic Calculator version 3.05".

The coordinates of the final pattern of points have been transformed in ESRI shape-files and showed by ArcGis (Fig. 7).

DGPS Master at SHOA

DGPS Master at Lord Cochrane DGPS Master at Brighton Figure 5: the DGPS Master positioning.

Figure 6: final planimetry of the DGPS survey.

Figure 7: DGPS final pattern of points showed by ArcGis.

POINT NAME	LAT_SOUTH	LONG_WEST	ELIPSO	NORTH	EAST	NMM
SHOA	33°01'41.73745"S	71°38'06.80713"W	116,534	6342493,703	253871,355	94,62
BRIGHTON	33°02'34.16863"S	71°37'30.72932"W	66,921	6340901,854	254848,013	45,01
LORDCOCHRANE	33°02'18.54364"S	71°37'48.05733"W	63,067	6341371,976	254386,339	41,15
Arco2	33°02'40.77177"S	71°37'11.70597"W	26,947	6340710,753	255346,695	5,03
Arco3	33°02'40.27402"S	71°37'14.38798"W	26,905	6340724,352	255276,723	4,99
Argentinal	33°03'09.28246"S	71°36'06.73683"W	31,937	6339874,322	257054,201	10,02
Argentina2	33°02'49.94818"S	71°36'14.36219"W	28,541	6340465,062	256841,592	6,63
Arma	33°01'37.23172"S	71°37'51.32961"W	27,800	6342638,089	254269,174	5,89
Augustin	33°02'27.55022"S	71°37'58.59023"W	86,210	6341087,653	254119,981	64,30
Baquedano	33°03'17.00584"S	71°37'12.64805"W	147,202	6339593,849	255350,111	125,29
Bote_Salvavidas	33°02'12.06807"S	71°37'40.20655"W	22,168	6341576,574	254585,065	0,25
Brasil	33°02'40.57234"S	71°36'32.28201"W	26,895	6340742,368	256369,468	4,98
La Cantera	33°02'47.61841"S	71°38'12.07917"W	130,923	6340460,610	253785,494	109,01
Camino_Ingleses	33°03'10.87494"S	71°35'42.91256"W	95,750	6339840,562	257673,519	73,84
Camogli	33°03'10.91357"S	71°37'34.14675"W	146,377	6339767,601	254787,655	124,46
Cementerio	33°01'45.29331"S	71°38'34.65778"W	125,836	6342365,995	253151,336	103,92
El_Vergel	33°03'46.56611"S	71°36'43.15705"W	271,272	6338702,230	256137,884	249,36
Ercilla	33°02'37.52539"S	71°35'41.43349"W	118,009	6340868,930	257686,499	96,10
Hermanas1	33°03'06.71144"S	71°36'24.27777"W	36,520	6339942,240	256597,146	14,61
Hermanas2	33°03'08.20559"S	71°36'24.18970"W	46,055	6339896,265	256600,574	24,14
Matriz	33°02'10.29748"S	71°37'53.75655"W	32,758	6341622,318	254232,086	10,84
Membrillos	33°01'17.43485"S	71°38'00.21443"W	27,153	6343246,705	254023,679	5,24
Mirador	33°02'27.68056"S	71°38'42.13136"W	234,198	6341055,244	252990,273	212,28
Napoli	33°03'18.10144"S	71°36'37.19294"W	124,528	6339583,013	256270,792	102,61
Parque Italia	33°02'54.31444"S	71°36'49.79717"W	28,836	6340307,701	255925,545	6,92
Playa Ancha	33°01'50.38044"S	71°39'02.89470''W	130,775	6342190,805	252422,498	108,86
Plata San Luis	33°02'39.24884"S	71°37'52.89836"W	118,213	6340730,945	254276,705	96,30
Plaza Bismark	33°02'53.55708"S	71°37'50.35720"W	131,584	6340291,789	254353,685	109,67
Portales	33°01'57.52313"S	71°35'25.86658"W	29,049	6342111,274	258060,013	7,14
Puertas Negras	33°03'29.38857"S	71°38'19.29392"W	395,087	6339169,050	253630,644	373,17
Redondo	33°01'21.32036"S	71°38'52.85001"W	54,989	6343092,664	252660,602	33,08
San Francisco	33°02'21.61404"S	71°36'03.20417"'W	67,346	6341345,146	257109,476	45,43
Yolanda	33°02'10.72229"S	71°35'54.95750"W	32,365	6341685,992	257315,160	10,45

Figure 8: DGPS points and their geographic coordinates.

Fig. 8 shows DGPS points and their Coordinates in:

- Geog, raphic, with South Latitude, West Longitude and Ellipsoid Height;

- UTM with Northing, Easting and Height over the mean sea level.

The DATUM is given in WGS-84 for both the systems.

Globally, a stock of 39 points have been measured and, among them, 33 have been used to georeferencing the aerial photo, identifying its shift from the measurement. For each point, in case of difference, the photo has been "stretched" until to overlap photo and DGPS point (Fig. 9). Figs. 10-37 show all the points of the DGPS survey.

4. CONCLUSIONS

The DGPS survey, carried out in Valparaiso, can be considered enough detailed to check the whole final GIS database coordinates with a very satisfactory precision. Therefore, the final GIS database can be considered a solid reference also for future developments.

Figure 9: example of shift between aerial photo (red) and DGPS measurement (yellow).

Figure 10: DGPS Rover on site ARCO 2.

Figure 11: DGPS Rover on site ARGENTINA 1.

Figure 12: DGPS Rover on site ARGENTINA 2.

Figure 13: DGPS Rover on site ARMA.

Figure 14: DGPS Rover on site AUGUSTIN.

Figure 15: DGPS Rover on site BAQUEDANO.

Figure 16: DGPS Rover on site BOTE SALVAVIDAS.

Figure 17: DGPS Rover on site BRAZIL.

Figure 18: DGPS Rover on site LA CANTERA.

Figure 19: DGPS Rover on site CAMINO INGLESES.

Figure 20: DGPS Rover on site CAMOGLI.

Figure 21: DGPS Rover on site CEMENTERIO.

Figure 22: DGPS Rover on site EL VERGEL.

Figure 23: DGPS Rover on site ERCILIA.

Figure 24: DGPS Rover on site HERMANAS.

Figure 25: DGPS Rover on site MATRIZ.

Figure 26: DGPS Rover on site MEMBRILLOS.

Figure 27: DGPS Rover on site MIRADOR.

Figure 28: DGPS Rover on site NAPOLI.

Figure 29: DGPS Rover on site PARQUE ITALIA.

Figure 30: DGPS Rover on site PLAYA ANCHA.

Figure 31: DGPS Rover on site PLATA SAN LUIS.

Figure 32: DGPS Rover on site PLAZA BISMARK.

Figure 33: DGPS Rover on site PORTALES.

Figure 34: DGPS Rover on site PUERTAS NEGRAS.

Figure 35: DGPS Rover on site REDONDO.

Figure 36: DGPS Rover on site SAN FRANCISCO.

Figure 37: Rover on site YOLANDA.

REFERENCES

- [01] MAR VASTO Project, General Progress Report n.1, 20.08.2007.
- [02] MAR VASTO Project, General Progress Report n.2, 28.01.2008.
- [03] MAR VASTO Project, General Progress Report n.3, 30.06.2008.
- [04] MAR VASTO Project, A GIS database for the City of Valparaiso, 30.06.2008.
- [05] Aerial photos provided by SHOA (Servicio Hidrografico y Oceanografico de la Armada de Chile) of the Valparaiso urban area:

scale 1:15000, black and white, 2004;

scale 1:20000, black and white, 1994.